

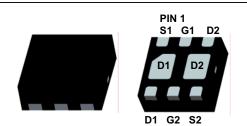
FDMA1032CZ

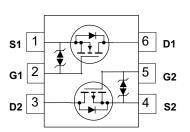
20V Complementary PowerTrench[®] MOSFET

General Description

This device is designed specifically as a single package solution for a DC/DC 'Switching' MOSFET in cellular handset and other ultra-portable applications. It features an independent N-Channel & P-Channel MOSFET with low on-state resistance for minimum conduction losses. The gate charge of each MOSFET is also minimized to allow high frequency switching directly from the controlling device. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to switching applications.

Features


Q1: N-Channel
 3.7 A, 20V. R_{DS(ON)} = 68 mΩ @ V_{GS} = 4.5V


 $\label{eq:R_DS(ON)} \begin{array}{l} = 86 \mbox{ m}\Omega \ensuremath{@}\ensuremath{V_{GS}}\xspace = 2.5V \\ \blacksquare \mbox{ Q2: P-Channel} \\ -3.1 \mbox{ A}, -20V. \mbox{ $R_{DS(ON)}$} = 95 \mbox{ m}\Omega \ensuremath{@}\xspace V_{GS} = -4.5V \end{array}$

 $R_{DS(ON)}$ = 141 m Ω @ V_{GS} = -2.5V

May 2010

- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2 kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

MicroFET 2x2 Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain-Source Voltage		20	-20	V
V _{GS}	Gate-Source Voltage		±12	±12	V
i	Drain Current – Continuous	(Note 1a)	3.7	-3.1	A
ID	– Pulsed		6	-6	
PD	Power Dissipation for Single Operation (Note 1a)		1.4		W
		(Note 1b)	0.7		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150		°C

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173 (Single Operation)	- ∘c/w
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	69 (Dual Operation)	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	151 (Dual Operation)	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
032	FDMA1032CZ	7"	8mm	3000 units

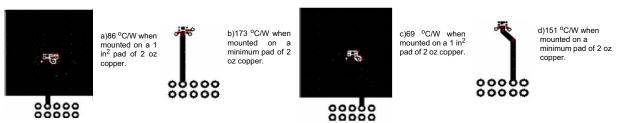
©2010 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown	$V_{GS} = 0 V,$ $I_{D} = 250 \mu A$	Q1	20			V
	Voltage Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$ $I_D = 250 \mu A$, Referenced to 25°C	Q2 Q1	-20	15		mV/°C
$\Delta \overline{DVDSS}$ $\Delta \overline{T}_{J}$	Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25 C $I_D = -250 \ \mu\text{A}$, Referenced to 25°C	Q2		-12		mv/ C
DSS	Zero Gate Voltage Drain	$V_{DS} = 16 V, V_{GS} = 0 V$ $V_{DS} = -16 V, V_{GS} = 0 V$	Q1			1	μA
I _{GSS}	Current Gate-Body Leakage	$V_{DS} = -16 V, V_{GS} = 0 V$ $V_{GS} = \pm 12 V, V_{DS} = 0 V$	Q2 All			1 	μA
							P
	racteristics (Note 2) Gate Threshold Voltage	$V_{DS} = V_{GS},$ $I_D = 250 \ \mu A$	Q1	0.6	1.0	1.5	V
V GS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS},$ $I_D = 230 \ \mu A$ $V_{DS} = V_{GS},$ $I_D = -250 \ \mu A$	Q2	-0.6	-1.0	-1.5	v
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 250 \ \mu A$, Referenced to 25°C	Q1		-4		mV/°C
ΔT_J R _{DS(on)}	Temperature Coefficient Static Drain-Source	$I_D = -250 \ \mu A$, Referenced to 25°C $V_{GS} = 4.5 \ V$, $I_D = 3.7 \ A$	Q2 Q1		4	68	mΩ
US(on)	On-Resistance	$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 3.3 \text{ A}$			50	86	1115.2
		$V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}, T_J = 125^{\circ}\text{C}$			53	90	
		$V_{GS} = -4.5V, I_D = -3.1 A$ $V_{GS} = -2.5 V, I_D = -2.5 A$	Q2		60 88	95 141	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -3.1 \text{ A}, T_J = 125^{\circ}\text{C}$			87	140	
g _{FS}	Forward Transconductance		Q1 Q2		16 -11		S
<u> </u>		$ V_{DS} = -10 V$, $I_D = -3.1 A$	Q2				
Dynami C _{iss}	c Characteristics	Q1	Q1		340		pF
		$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$	Q2		540		pr
C _{oss}	Output Capacitance	Q2	Q1		80		pF
C _{rss}	Reverse Transfer	$V_{DS} = -10 V$, $V_{GS} = 0 V$, f = 1.0 MHz	Q2 Q1		120 60		pF
	Capacitance		Q2		100		
Switchi	ng Characteristics (Note						
t _{d(on)}	Turn-On Delay Time	Q1	Q1		8	16	ns
	-	$V_{DD} = 10 V, I_D = 1 A,$	Q2		13	24	
t _r	Turn-On Rise Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω	Q1 Q2		8 11	16 20	ns
t _{d(off)}	Turn-Off Delay Time	Q2 T	Q1		14	26	ns
t _f	Turn-Off Fall Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	Q2 Q1		37 3	<u>59</u> 6	
lf		V _{GS} = -4.3 V, N _{GEN} = 0.22	Q2		36	58	ns
Q _g	Total Gate Charge		Q1		4	6	nC
	Opto Optono Objecto	V_{DS} = 10 V, I_{D} = 3.7 A, V_{GS} = 4.5 V	Q2 Q1		7 0.7	10	nC
Q _{as}	Gate-Source Charde		Q2		1.1		_
Q _{gs} Q _{gd}	Gate-Source Charge Gate-Drain Charge	Q2 V _{DS} = -10 V,I _D =- 3.1 A,	Q1		1.1		nC

FDMA1032CZ 20V Complementary PowerTrench[®] MOSFET

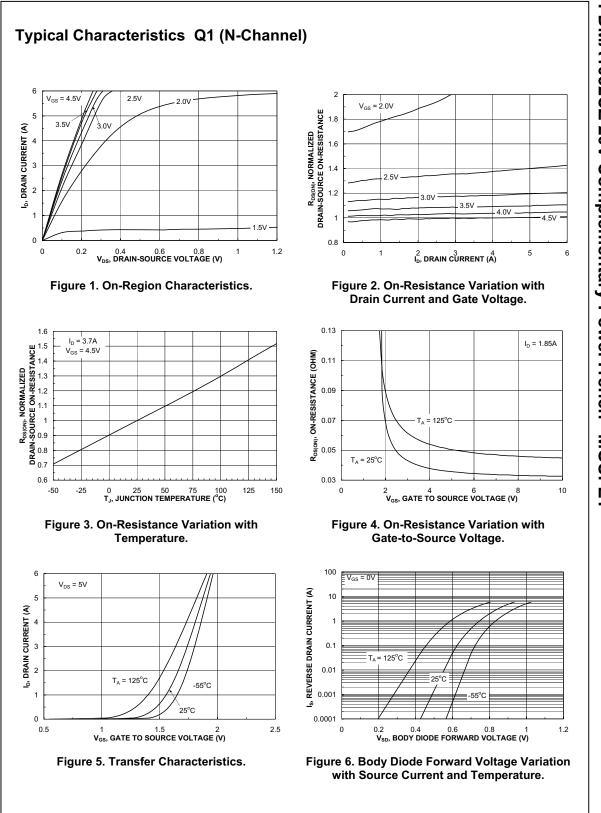
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-S	ource Diode Character	istics and Maximum Ratings	5				
ls	Maximum Continuous Source-Drain Diode Forward Current		Q1			1.1	Α
			Q2			-1.1	
V _{SD}	Source-Drain Diode Forward	V _{GS} = 0 V, I _S = 1.1 A (Note 2)	Q1		0.7	1.2	V
	Voltage	$V_{GS} = 0 V, I_S = -1.1 A$ (Note 2)	Q2		-0.8	-1.2	
t _{rr}	Diode Reverse Recovery	Q1	Q1		11		ns
	Time	I _F = 3.7 A, dI _F /dt = 100 A/μs	Q2		25		
Q _{rr}	Diode Reverse Recovery	Q2	Q1		2		nC
	Charge	I _F = –3.1 A, dI _F /dt = 100 A/µs	Q2		9		

Notes:

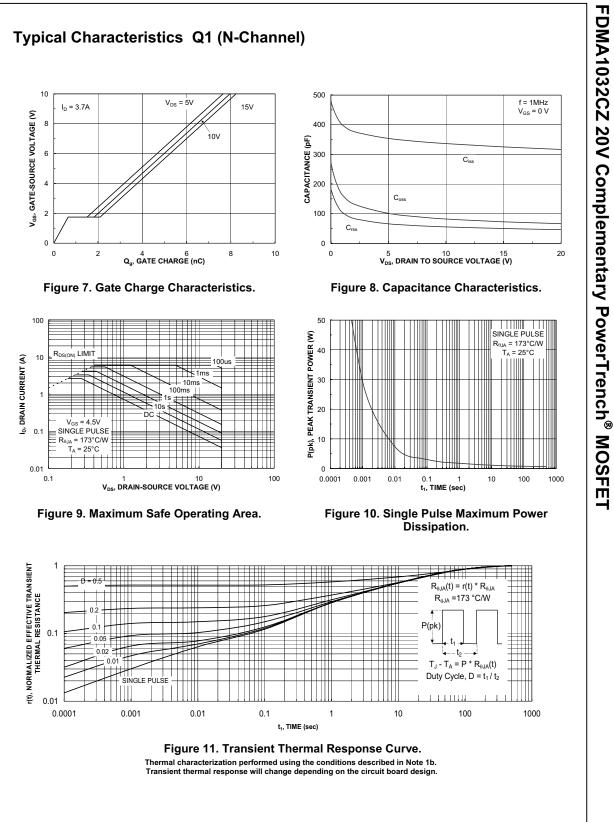

R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

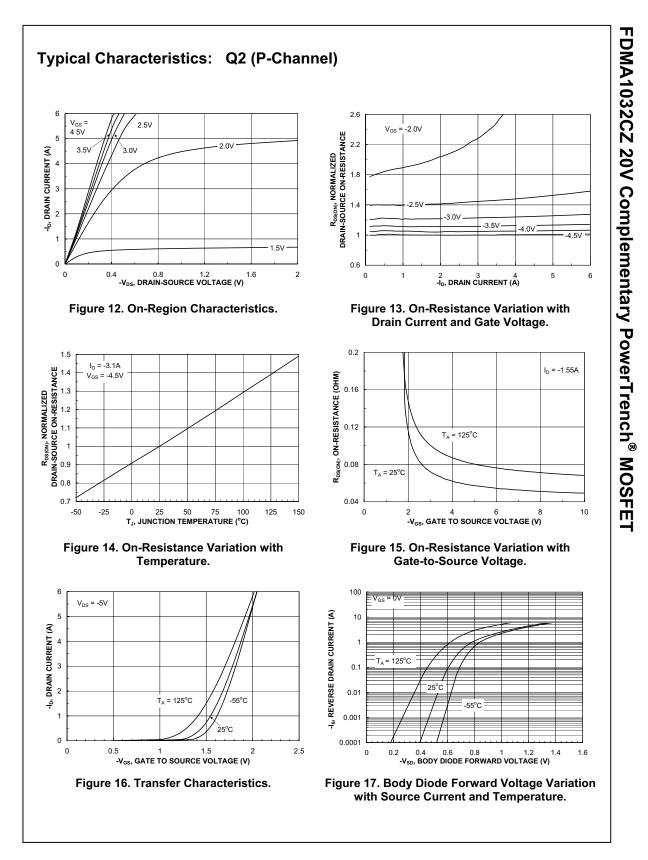
 (a) R_{0JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

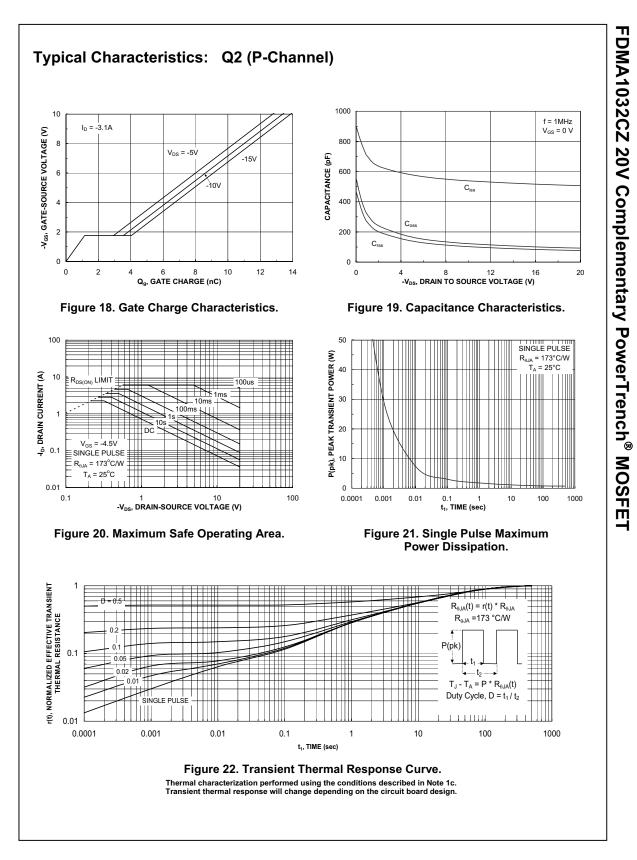
(b) $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.

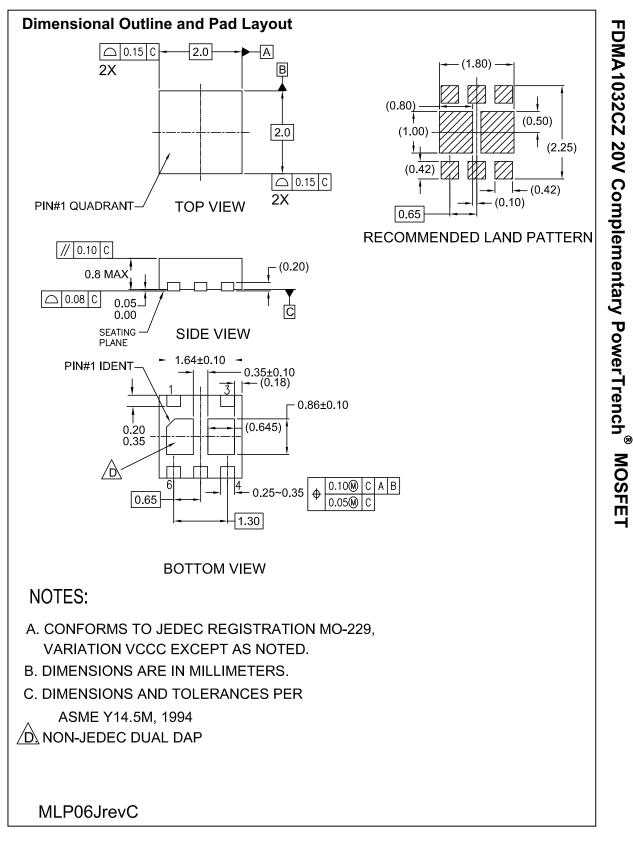

(c) R_{0JA} = 69 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.

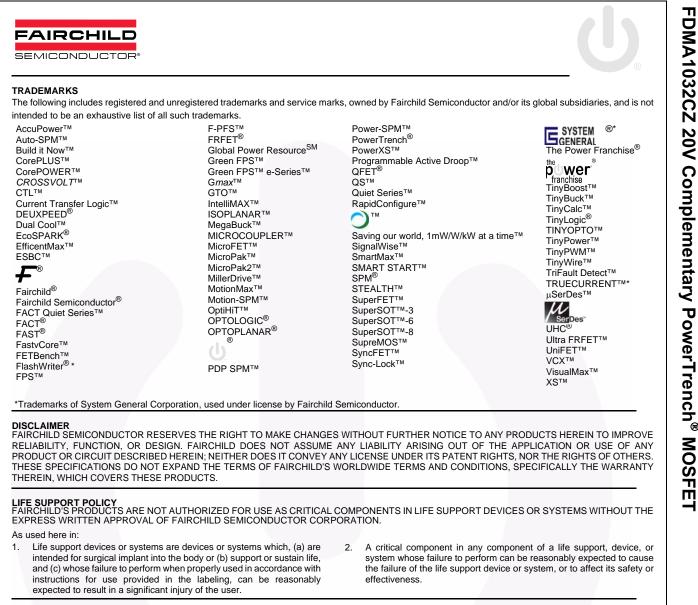
(d) $R_{\theta JA}$ = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.




2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.




FDMA1032CZ 20V Complementary PowerTrench[®] MOSFET

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 148